首页> 外文OA文献 >Comparison of alkene hydrogenation in carbon nanoreactors of different diameters: probing the effects of nanoscale confinement on ruthenium nanoparticle catalysis
【2h】

Comparison of alkene hydrogenation in carbon nanoreactors of different diameters: probing the effects of nanoscale confinement on ruthenium nanoparticle catalysis

机译:不同直径碳纳米反应器中烯烃加氢的比较:探讨纳米限制对钌纳米粒子催化的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The catalytic properties of ruthenium nanoparticles (RuNPs) supported in carbon nanoreactors of different diameters – single walled carbon nanotubes (SWNTs, width of cavity 1.5 nm) and hollow graphitised nanofibers (GNFs, width of cavity 50-70 nm) – were evaluated using exploratory alkene hydrogenation reactions and compared to RuNPs adsorbed on the surface of SWNT or deposited on carbon black in commercially available Ru/C. Supercritical CO2 is shown to be essential to enable efficient transport of reactants to the catalytic RuNPs, particularly for the very narrow RuNP@SWNT nanoreactors. Though the RuNPs in SWNT are observed to be highly active, they simultaneously reduce the accessible volume of very narrow SWNTs by 30-40 % resulting in lower overall turnover numbers (TONs). In contrast, RuNPs confined in wider GNFs were completely accessible and demonstrated remarkable activity compared to unconfined RuNPs on the outer surface of SWNTs or carbon black. Control of the nanoscale environment around the catalytic RuNPs significantly enhances the stability of the catalyst and influences the local concentration of reactant molecules in close proximity to the RuNPs, illustrating the comparable importance of confinement to that of metal loading and size of NPs in the catalyst. Interestingly, extreme spatial confinement also appeared not to be the best strategy for controlling the selectivity of hydrogenations in a competitive reaction of norbornene and benzonorbornadiene, with wider RuNP@GNF nanoreactors displaying enhanced selectivity for the hydrogenation of the aromatic group containing alkene (benzonorbornadiene). This is attributed to the presence of nanoscale graphitic step-edges within the GNF making them an attractive alternative to the extremely narrow SWNT nanoreactors for preparative catalysis.
机译:使用探索性方法评估了不同直径的碳纳米反应器(单壁碳纳米管(SWNT,腔宽1.5 nm)和中空石墨化纳米纤维(GNF,腔宽50-70 nm))中负载的钌纳米颗粒(RuNP)的催化性能。烯烃加氢反应,并与市售Ru / C中吸附在SWNT表面或沉积在炭黑上的RuNPs进行比较。研究表明,超临界CO2对于使反应物有效传输到催化RuNP至关重要,特别是对于非常狭窄的RuNP @ SWNT纳米反应器而言。尽管观察到SWNT中的RuNP具有很高的活性,但它们同时将非常狭窄的SWNT的可访问量减少了30%至40%,从而降低了总周转率(TONs)。相反,与SWNTs或炭黑外表面的无限制RuNPs相比,封闭在较宽的GNFs中的RuNPs完全可以访问,并显示出显着的活性。控制催化RuNP周围的纳米级环境显着提高了催化剂的稳定性,并影响了紧邻RuNP的反应物分子的局部浓度,这说明了限制金属对金属负载和催化剂中NP尺寸的重要性。有趣的是,在降冰片烯和苯并降冰片二烯的竞争反应中,极端的空间限制似乎也不是控制氢化选择性的最佳策略,更宽的RuNP @ GNF纳米反应器显示出对含芳族烯烃(苯并降冰片二烯)氢化反应的更高选择性。这归因于GNF中纳米级石墨台阶边缘的存在,使其成为极窄的SWNT纳米反应器的诱人替代品,可用于制备催化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号